
ELSEVIER 
PII: SO309-1708(97)00003-1 

Advances in Wafer Resources 21 (1998) 401-425 
Copyright 0 1998 Elsevier Science Limited 
Printed in Great Britain. All rights reserved 

0309-1708/98/$19.00 

Coupled groundwater flow and transport: 
2. Thermohaline and 3D convection systems 

H.-J. G. Diersch’ & 0. Kolditzb 
a WASY Institute for Water Resources Planning and Systems Research Ltd., Waltersdorfer Str. 105, D-12526 Berlin, Germany 

bInstitute of Fluid Mechanics and Computer Applications in Civil Engineering, University of Hannover, Appelstr. 9a, 
D-30167 Hannover, Germany 

(Accepted 31 October 1996) 

This work continues the analysis of variable density flow in groundwater systems. 
It focuses on both thermohaline (double-diffusive) and three-dimensional (3D) 
buoyancy-driven convection processes. The finite-element method is utilized to 
tackle these complex non-linear problems in two and three dimensions. The 
preferred numerical approaches are discussed regarding appropriate basic 
formulations, balance-consistent discretization techniques for derivative quan- 
tities, extension of the Boussinesq approximation, proper constraint conditions, 
time marching schemes, and computational strategies for solving large systems. 
Applications are presented for the thermohaline Elder and salt dome problem as 
well as for the 3D extension of the Elder problem with and without thermohaline 
effe’cts and a 3D BCnard convection process. The simulations are performed by 
using the package FEFLOW. Conclusions are drawn with respect to numerical 
efforts and the appropriateness for practical needs. 0 1998 Elsevier Science 
Limited. All rights reserved. 

Key words: porous media, variable density flow, finite element method, double- 
diffusive convection, thermohaline convection, three-dimensional BCnard 
convection. 

1 NOMENCLATURE 

Latin symbols 

A 
B 
c, c0 

G 

Cf cs I 

Dd 

Dg 

d 
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ei 

fP 

Dimensions 
1 
1 
ML-3 

ML-3 
L2T-2Q-1 

L2T-’ 

L2T-’ 

L/d aspect ratio 
buoyancy ratio (Turner number) 
concentration and reference con- 
centration, respectively 
maximum concentration 
specific heat capacity of fluid 
and solid, respectively 
m.edium molecular diffusion 
coefficient of fluid 
tensor of hydrodynamic disper- 
sion 
thickness (height) 
extent 
components of the gravitational 
unit vector 
constitutive viscosity relation 
function 

g 
h 
Z 
K 

LT-2 
L 
1 
LT-’ 

Kij LT-’ 

k, L2 
L L 
Le 1 
%?I 1 
ni 1 

Pf 
Qc 
Qc” 

ML-1T-2 
ML-3T-’ 
MT-’ 

QEB T-l 

QT 
QT” 

ML-IT-’ 
ML2T-3 

gravitational acceleration 
hydraulic head 
e/L symmetric intrusion ratio 
isotropic hydraulic conductivity 
constant 
tensor of hydraulic conductivity 
tensor of permeability 
length 
Lewis number 
basis (shape) function at node m 
normal unit vector (positive out- 
ward) 
fluid pressure 
sink/source of contaminant mass 
lumped balance flux of solute 
(positive inward) 
extended Boussinesq approxi- 
mation term 
sink/source of heat 
lumped balance flux of heat 
(positive inward) 
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T-l 
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MT-3 
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ML-2T-1 

LT-’ 

1 

Ra,, Rat 1 

Ra, 1 
& L-l 

T,T, Q 

vi LT-’ 

we wm 

Xi L 

Greek symbols 
1 
L 

8-l 
L 

1 
ML-3 
8 
T 
1 
T-l 
L2T-’ 
MLT-38-’ 

MLT-30-1 

ML-IT-* 

sink/source of fluid 
prescribed normal boundary 
mass flux (positive outward) 
Darcy flux of fluid 
normal component of the con- 
ductive part of the heat flux 
(positive outward) 
normal component of the dis- 
persive part of the mass flux 
(positive outward) 
normal component of the con- 
vective plus dispersive part of 
the mass flux (positive outward) 
normal component of the Darcy 
fluid flux (positive outward) 
specific retardation factor and 
its time derivative, respectively 
solutal and thermal Rayleigh 
number, respectively 
critical Rayleigh number 
specific storage coefficient (com- 
pressibility) 
temperature and reference tem- 
perature, respectively 

c qfqf absolute specific Darcy 
&id flux 
spatial weighting function and 
weighting function at node m, 
respectively 
Cartesian coordinates, Eulerian 
spatial coordinate vector 

fluid density difference ratio 
longitudinal and transverse ther- 
modispersivity, respectively 
fluid expansion coefficient 
coefficients of longitudinal and 
transverse dispersivity of solute, 
respectively 
boundary 
error tolerance measure 
concentration difference 
temperature difference 
time step width at time plane n 
porosity 
chemical decay rate 
thermal diffusivity 
tensor of hydrodynamic thermo- 
dispersion 
tensor of thermal conductivity 
tensor of mechanical thermodis- 
persion 
thermal conductivity for fluid 
and solid, respectively 
dynamic fluid viscosity and 
reference viscosity, respectively 

PfT PL ML-3 

PS ML-3 
c 1 

x(C) 

W 1 
R 

Subscripts 
i,j 

I 

m,n,k 

n 
0 

P 

Superscripts 

; 
P 
R 
S 

2 INTRODUCTION 

fluid density and reference den- 
sity, respectively 
solid density 
(T - 150)/100 normalized tem- 
perature, T in “C 
linear (Henry) or non-linear 
(Freundlich, Langmuir) sorptiv- 
ity function 
C/pf mass fraction 
domain 

spatial Eulerian coordinate (Ein- 
stein’s summation convention) 
direction of gravity in the Car- 
tesian coordinate system 
nodal points (Einstein’s summa- 
tion convention) 
time plane or normal direction 
reference value 
Gauss point 

finite element 
fluid phase 
predictor value 
prescribed boundary value 
solid phase 

Thermohaline (or double-diffusive) convection processes 
are connected with the presence of heterogeneous 
temperature and concentration fields. Thus, convective 
currents can arise from heat and salinity gradients acting 
simultaneously (e.g. Refs 2, 8, 52-54, 59, 60, 67, 72, 73). 
Geophysical applications of thermohaline models can be 
found for instance in the field of geothermics and waste 
disposal in salt formations.24 Thermohaline effects are 
important for the production of minerafzed thermal 
water, the reinjection of cooled brine into heated deep 
aquifers connected with geothermal supply technologies, 
and groundwater movement near salt domes. 

Usually, the phenomena of double-diffusive convec- 
tion (DDC) are related to the presence of both: (1) at 
least, two properties (substances, thermal energy) 
stratifying the fluid and having different diffusivities; 
and (2) opposing effects on the vertical density 
gradient.* Accordingly, different regimes can be distin- 
guished: a ‘diffusive regime’ occurs if the destabilizing 
potential comes from the property with the larger 
diffusivity, e.g. a stable salinity gradient is heated from 
below. On the other hand, a ‘finger regime’ exists if the 
driving (destabilizing) forces are caused by the more 
slowly difIusing property, e.g. hot saline fluid on top of 
a stable temperature gradient. Both regimes can also 
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appear in a differentiated form referred here to as a 
‘mixed DDC regime’ if both properties can destabilize 
and affect the fluid during the temporal development, 
e.g. a heavy cool solute sinks down to a region which is 
heated from below, so a finger regime at the beginning 
converges more to a diffusive regime over time. 

The first part of the paper by Kolditz et a1.43 mainly 
focused on the verification of numerical schemes against 
available benchmarks for density-coupled convection 
processes. Established test examples (e.g. the Henry 
problem, Elder problem, and salt dome problem) are 
only 2D and single-diffusive (either mass or heat-driven) 
convection processes. But even for these academic, 
seemingly simplistic 2D problems a number of discre- 
pancies appear, still, for most recent findings.55 It has 
been shown43 that numerical schemes with their spatial 
and temporal resolutions can essentially influence 
computational results. Figure 1 recalls the contradictory 
results for the Elder problem as well as the salt dome test 
case obtained by different authors. While Elder23 and 
the recomputation done by Voss and Souza75 used 
obviously overdiffusive schemes on relatively coarse 
grids, newer findings43’55 with refined spatial and 
temporal discretizations reveal convection patterns that 
are distinctly different from former work. The flow field 
now indicates a central upwelling rather than down- 
welling. More dramatically, Oldenburg and Pruess” 
recently presented new re;sults for the salt dome problem 
(HYDROCOIN level 1 case 5). They believe they 
achieved much more accurate solutions for this example. 
However, their results are fully outside of all results 
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known to date (Fig. l(b)). In fact, their ‘swept forward- 
type’ solutions are suspiciously very near to the pure 
freshwater case without any density coupling, so 
TOUGH2’s results become widely questionable for 
problems involving velocity-dependent dispersion effects. 
A possible reason for this discrepancy is recently 
indicated by the work of Konikow et aL” They showed 
that a salinity pattern of a swept forward type appears if 
constrained boundary conditions for the salt dome 
interface are applied (allowing only dispersive release 
of brine and precluding any convective release of brine). 
While the study by Konikow et aI.@ is more physically 
motivated it also gives an indication of the importance 
of a mathematically (numerically) correct handling 
of boundary conditions for this type of problem, 
independently of the physical appropriateness or not. 

In the past, Galerkin methods, finite differences 
(FDM) and finite element methods (FEM) have been 
employed to solve the non-linear coupled balance 
equations for variable density groundwater problems 
in 2D. Pinder and Cooper57 used the method of 
characteristics. Finite elements based on a primitive 
u-v-p-variable formulation are utilized by Segol et a1.,66 
Huyakorn and Taylor38 and Diersch.1s-‘5 However, the 
subsequent works desisted from primitive variable 
approaches because their increased accuracy was 
shown to be in disproportion to the increased numerical 
effort and inherent restrictions in formulating boundary 
conditions. Accordingly, standard formulations succeeded 
that are based on substituting the Darcy law in the 
primary balance equations. Recent works devoted to this 

Fig. 1. (a) Simulated concentration pattern at 20 years for the Elder problem with a Rayleigh number of 400; (left) results obtained 
by the SUTRA simulator (Voss and Souza75), (solid curves) and by Elder23 (dashed curves), and (right) computed by the FEFLOW 
simulator in agreement with the results attained by ROCKFLOW and TOUGH2 as discussed b 
test case: (left) TOUGH2 :results5’ 

Kolditz et al.,43 and (b) salt dome 
against (right) FEFLOW (and ROCKFLOW) findings 4Y for steady-state with mechanical 

dispersion of /3t = 20 m and /3r = 2 m. 
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subject arc presented, among others, by Frind,26 Diersch 
et a1.,16 Voss and Souza,75 Diersch,17 Hassanizadeh and 
Leijnse:’ Herbert et a1.,32 Galeati et a1.,27, Schincariol 
et a1.,63 Fan and Kahawita,25 Oldenburg and Pruess,55 
Croucher and O’Sullivan,‘2 Zhang and Schwartz,79 and 
Kolditz.42 On the other hand, three-dimensional applica- 
tions are related to field problems as given by Huyakorn 
et a1.,39 Kakinuma et aLm and Xue et a1.76 and do not 
consider rigorously the density coupling mechanisms. 
However, there are prior theoretical and numerical works 
in three-dimensional free convection problems mostly 
focused on the (cavity) Horton-Rogers-Lapwood (HRL) 
problem” presented by Holst and Azi~,~~ Zebib and 
Kassoy,78 Straus and Schubert,69’70 Horne,36 Schubert and 
Straus,64 Caltagirone et a1,9 Chan and Banerjee,” and 
Beukema and Bruin.6 

It is obvious from the above that the extension to 
thermohaline and/or 3D density-coupled convection 
problems will significantly increase the importance of 
both getting a physically equivalent process description 
in the discretized models and overcoming the numerical 
burden, particularly if aiming at practical problems. In 
the following, relevant numerical aspects are discussed 
in the context of the FEM. The developed solution 
strategies are implemented in the 3D finite-element 
simulator FEFLOW.20 FEFLOW is employed to study 
2D and 3D, thermohaline and buoyancy-driven convec- 
tion problems from various perspectives. First, we 
expand the 2D Elder and salt dome problems to 
thermohaline processes in order to study thermal 
influences on groundwater-brine flow systems. Second, 
we extend the original Elder problem to 3D for both 
single-diffusive (solutal) and double-diffusive (thermo- 
haline) convection processes to analyze the evolution of 
3D pattern formations in comparison with the 2D 
counterparts. Finally, we consider a BCnard problem as 
an example of more complex 3D multicellular convec- 
tion in a porous layer. The presented results for 
thermohaline and solutal convection systems may 
provide examples for a comparison analysis in 2D and 
3D by using alternative approaches. 

3 BASIC EQUATIONS 

The governing equations for the coupled mass and heat 
transport in groundwater (saturated porous medium) 
are derived from the basic conversion principles for 
mass, linear momentum, and energy.43 The following 
non-linear system finally results20,22 which has to 
be solved in two and three dimensions 

$ (RC) + &, (& - D$) + R8C I I 
= Qc divergent form 

Ra$+P:&&$) +(R~+Q,,C 
I I J 

= Qc convective form 

b 

(3) 

(4 

To close the set of balance equations the following 
constitutive formulations are additionally needed: 

pf = pi 1 + (cs _” co) (C - co> - m - 
[ To) 1 1 

a[x(C) * Cl R=c+(l--)x(C) &=~+(l-6) ac 
I 

A, = Xyd + gpd QT = v'Q: + (1 - cb”Qf 

XFd = [df + (1 - E)Y] 6, 

(5) 

As seen, a hydraulic-head-conductivity-(h-K)-form of 
the Darcy equation (2), instead of the pressure-perme- 
ability-(p-k)-form, is preferred in FEFLOW, which 
usually permits more convenient formulations of 
boundary conditions and parameter relations for 
applications in subsurface hydrology. As a result, the 
tensor of hydraulic conductivity Kii refers to the 
reference density pi and the reference viscocity pk, 
which are, on the other hand, related to the proper 
reference conditions for the concentration C, and the 
temperature T,. For such a formulation a viscosity 
relation function fp, in eqn (5), appears to include 
viscosity effects in Darcy’s law (2). The following 
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constitutive polynomial expression is used 

f 
fp = lb 

4w, T) = 

1 + 0.7063~ - 0.04832~~ 
1 + 0.7063a(,,,) - 0+4832$,=r0) (6) 

which is a combination of empirical relationships given 
by Lever and Jackson4* for high-concentration saltwater 
and by Mercer and Pinder” for geothermal processes in 
the range between 0 <and 300°C. In practice, the 
expansion coefficients d and fl of eqn (5) are, in most 
cases, considered as constant.% For the present inves- 
tigations we shall also u~ie this assumption to maintain 
an unified parameter basis for comparison purposes. 
However, it should be mentioned in a geothermal 
context where large temperature variations occur and 
buoyancy forces are dominant, that this approach is 
often not appropriate.‘6 IBased on the theoretical frame- 
work done by PerrocheQ6 FEFLOW is also capable of 
handling a non-linear va.riable thermal expansion 6 (7’) 
in the form of a fifth-order polynomial to match the 
fluid density variation over a wide temperature range 
with a high accuracy anld to satisfy the zero condition 
(density anomaly) at 4°C. For more details see 
Diersch.** 

The divergent form and the convective form of the 
contaminant mass transport equation (3) (the energy 
balance equation (4) has already led to a convective 
form after introducing the temperature) are physically 
equivalent. Commonly, the convective form of the 
transport equation is preferred for numerical approx- 
imations because simpler boundary-value problems are 
accessible. 

It is known28t43 the Boussinesq approximation 
becomes insufficient for l.arge density variations (e.g. at 
high-concentration brines or high-temperature gradi- 
ents). The main difference between the Boussinesq 
approximation and the actual balance quantities is 
expressed by the additional term Qns(C, T) in the 
continuity equation (1) according to 

QEB(C, T) = - E ((c,-$g $ - 8:) 

-qf (c+-Jax,- ( - dC DaT - dXi > (7) 

which is neglected if the Boussinesq approximation is The substitution of Darcy fluxes (2) in the continuity 
assumed. The first term in eqn (7) can be omitted if the eqn (1) gives immediately an equation to determine the 
temporal changes in concentration and/or temperature unknown hydraulic head L according to the weak 

vanish. However, even the evolving features of a 
convection process may be thoroughly affected at 
higher density contrasts (problems of bifurcation, 
physical instability and hydrodynamic pattern forma- 
tion). The second term of eqn (7) can be ignored if 
the density gradient is essentially orthogonal to the 
velocity vector. This is quite often not a tolerable 
assumption. Note, eqn (7) has to be modified in the case 
of a non-linear variable thermal expansion p(T).** 

4 SPATIAL DISCRETIZATION 

The above eqns (1) to (4) are discretized by the FEM 
using bilinear or biquadratic elements for 2D, and 
prismatic pentahedral trilinear or hexahedral trilinear 
and triquadratic elements for 3D. Finally, it yields the 
following coupled matrix system 

Oh + S(n, C, T)R = F(), q, C,c, T, i*, 

Aq = B@, C, T> 

PW + D(q, c)C = R(C) 

Uf+L(q, T)T= W(T) (8) 

where L, q, C and T represent the resulting vectors of the 
nodal hydraulic head, Darcy fluxes, contaminant con- 
centration and temperature, respectively. The dot means 
differentiation with respect to time t. The matrices S, A, 
0, P and U are symmetric and sparse, while D and L are 
unsymmetric and sparse. The remaining vectors F, B, R 
and W encompass the right-hand sides (RHS) of eqns 
(1) to (4), respectively. The main functional dependence 
is shown in parenthesis. 

The individual finite-element formulations of the 
matrix system (8) as realized in FEFLOW are summar- 
ized in Appendix A. Note, different formulations result 
for the divergent and the convective forms of the 
transport equations. Although physically equivalent, 
they can deliver different numerical solutions due to 
their different boundary-value formulations. 

Another point of view is related to the numerical 
evaluation of the Darcy fluxes q for a given discretiza- 
tion. The success of a numerical solution for variable 
density flow problems is essentially dependent on an 
appropriate choice of suitable schemes for computing 
derivative quantities from the Darcy equation. 

5 CONTINUOUS APPROXIMATION OF 
VELOCITY FIELDS 
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formulation (A3) in Appendix A. If h is known and 
assuming initial C and T distributions, the fluxes q can 
be directly computed via Darcy’s equation (2). However, 
a careful handling of derivative quantities is required. 
As normally done in FEM, piecewise continuous (Co) 
basis functions N, (Appendix A) for the hydraulic 
head h generate velocity fields q (using derivatives of 
hydraulic head) that exhibit discontinuities across 
element boundaries. It results in non-unique values at 
nodal points. Particularly for buoyancy-influenced 
flows, discontinuous (non-unique) velocities can 
cause difficulties (spurious vertical velocities) in 
the numerical solution due to inappropriate balance 
approximation of the lower order term dh/dxi, behaving 
constantly in an element for the case of linear basis 
functions, and the higher order gravitational term 
[d(C, T) - dlld9 varying linearly in an element for 
linear basis functions, of the RHS of the Darcy eqn (2). 
This has already been addressed in previous works29,32)75 
and different numerical schemes were proposed to 
overcome these problems. 

Voss and Souza75 preferred, for the SUTRA code in 
2D, a reduced-order approximation of the buoyancy 
term; actually the concentration is averaged in every 
element, therefore, the pressure gradient and the 
concentration distribution have the same spatial varia- 
bility, practically constant (for linear basis functions). 
This is called a consistent velocity evaluation. Leijnse46 
showed that such a consistent velocity approximation 
can be interpreted as an average of the local gravity 
component in the local directions of a finite element. A 
generalization of this spatial averaging has recently been 
presented by Knabner and Frolkovic.41 Instead of 
reducing the approximations Herbert et a1.32 introduced 
a mixed interpolation strategy in NAMMU for 2D, 
where the pressure is approximated by quadratic 
elements to obtain a linearly distributed pressure 
gradient which becomes consistent with a linear distri- 
bution of the concentration-dependent buoyancy term. 
Clearly, quadratic basis functions increase the computa- 
tional expense and, especially for 3D, an alternative 
approach is preferable. 

Taking into consideration that the discretized balance 
terms of the conservation equations generally provide a 
different spatial variability (compare the ‘diffusion’ term 
against the ‘convective’ term or a ‘reactive’ term), a 
consistent approximation by the FEM means that all 
terms have to be rigorously weighted at nodal points. As 
a result, unique values of even discontinuous variables 
are generated at nodal points. This principle is conse- 
quently also applied to the velocity evaluation and leads 
to approaches referred to as smoothing techniques used 
in FEFLOW for the present analysis. Lee et a1.45 
thoroughly discussed both global and local smoothing 
techniques for derivative quantities. In this light, the 
weak form of the Darcy equation (A4) in Appendix A 
can be recognized as a global smoothing procedure 

which was introduced in the water resources literature 
by Yel.” Today, smoothing techniques have an addi- 
tional meaning for adaptive methods to compute higher 
order solutions for an error estimation.21 Appendix B 
summarizes the smoothing techniques available in 
FEFLOW and which are appropriate for the present 
simulations of coupled phenomena. While global 
derivative smoothing schemes with a consistent mass 
matrix require a higher numerical effort, lumped mass 
smoothing algorithms as well as simpler local smoothing 
schemes are the most cost-effective approaches and have 
been shown to be well-suited for the present class of 
problems. The latter is to be recommended for large 3D 
problems. 

Smoothed velocities of a higher-order approximation 
lead to a continuous distribution of all velocity com- 
ponents in a mesh. As a consequence, continuous fields 
also exist along material interfaces, e.g. between media 
with different hydraulic conductivities, where an inter- 
facial nodal point shares these different media and, 
naturally, a weighted average of the flux quantities 
results. Leijnse46 pointed out that physically unrealistic 
results can be obtained for cases where the conductivity 
in adjacent elements differs by more than two orders of 
magnitude. Indeed, if utilizing such continuous velocity 
fields from a mesh having an insufficiently adapted 
interface, discretization particle tracking procedures can 
lead to poor results if starting pathlines near such an 
interface location (a particle may effectively be propa- 
gated into media with low hydraulic conductivity). On 
the other hand, a discontinuous velocity field approxi- 
mation often gives significant problems when a particle 
crosses an element. Then, a particle can be ‘caught’ in 
the interface due to components that have opposite 
directions across an element edge, as indicated by Sauter 
and Beusen,62 who introduced special transition ele- 
ments with interpolated (smoothed) velocity properties 
to overcome these difficulties. As the sum, the higher- 
order approximation of continuous velocities is the most 
natural approach in the finite element method and needs 
no ad hoc techniques in adapting interface conditions, 
provided, however, the interface is appropriately dis- 
cretized. The necessity for a continuous flow field 
approximation, also in the context of modelling hetero- 
geneous media, is thoroughly discussed in the work 
covering mixed hybrid finite element techniques pre- 
sented by MosC et al.” followed by recent discussions 
given by Cordes and Kinzelbach” and Ackerer et al.’ 

6 CONSTRAINTS AND RELATED BUDGET 
ANALYSIS 

Constraints of boundary conditions can play an 
important role in practical modelling of variable density 
transport. Typically, in saltwater enroachment prob- 
lems, the boundary conditions of freshwater and 
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saltwater are dependent on the in/outflowing character- 
istics essential to a correct mathematical formulation. 
However, most prior works27~32~38144755766~75 did not 
consider such conditions in a rigorous manner. To 
identify the problem let us consider, for instance, the salt 
dome flow problem as schematically shown in Fig. 2. 

Alternating boundary concentrations appear on the 
top boundary depending on the dynamic process. As 
long as water enters tihe domain it should have a 
prescribed concentration of freshwater. However, if the 
water leaves the domain (along the same upper 
boundary) the concentration on this boundary is 
unknown and should be computed. Such a description 
can be easily realized if the entire boundary section is 
assigned by a freshwater boundary condition of the first 
kind (C = Cp) and, at the same time, the boundary will 
be imposed by a constraint condition in the form of a 
null minimum mass flux Qy’ G 0. Such an arrange- 
ment guarantees that the freshwater condition remains 
valid as long as the convective mass flux, being 
concentration-dependent due to the density variation, 
points into the domain. 

A rigorous handling of such constraints is permitted 
by a prescription of complementary conditions for each 
boundary type.20122 For instance, the minimum and 
maximum constraints of a Dirichlet-type concentration 
will lead to additional conditions in the following form 
(it reads: the imposed boundary condition C = Cy (t) is 
accepted only if the related mass balance flux QE (and 
the related hydraulic head hR) is within given min-max 
bounds, if not, these bounds have to be used as new 
boundary conditions, where the boundary type has to be 
changed from a first kind into a flux-type boundary 
condition of a point sink/source Qc) 

Qc” < Q:“‘(t) 
and 

first kind C:(t) only if Qc” > Qp’ (t) 

and 
hminl < ha < hm=l - - 

else set Qc as an intermediate flux-type condition 

according to 

entering freshwater C = Cr = 0 releasing water with concentration C = ? 

Fig. 2. Application of transport constraints for saltwater 
intrusion in flowing groundwater over a salt dome. 

boundary point (node) instead of the original first kind 
boundary condition. Similar expression exist for the other 
types of boundary conditions. This procedure allows the 
control of concentration at the boundary, depending on 
both the, balanced flow conditions through the boundary 
(e.g. Qy’ = 0) and the location of possible free-surface 
conditions within the bounds hmin, /zm”. The latter is very 
important for complex mine flooding processes as studied 
by Diersch et al.19 

The computed fluxes QE represent lumped (summed- 
up) mass balance fluxes at nodal points 

Q:=-Jr& 

Note, the balance quantities are defined positive inward on 
I?. Actually, the specific balance fluxes & are composed by 
their convective and dispersive parts according to 

- dC 

convective dispersive 

Q:“‘(t) if {QE 2 Qr’ (t) and hm”” 5 hR 5 ,,“‘} 

Qc = Q$“l (t) if { QE 5 QTinl (t) and PinI 5 hR 5 h”““’ } 

0 if {hR < hmi” or hR > /rmax} 

(9) 

where Qt is the mass balance flux at the boundary point 
to be computed while the Cf condition is imposed, Qg=’ 
and Qz’“’ denote the prescribed time-dependent maxi- 
mum and minimum bounds, respectively, and Qc 
represents a singular mass sink/source to be set at the 

In practice, it has been shown to be inappropriate to 
include the total (convective plus dispersive) flux into the 
procedure of controlling the constraint conditions 
because the direction of dispersive fluxes is ambiguous 
(e.g. the dispersive spreading also occurs against the 
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flow direction). Accordingly, 
tion of fluxes is exclusively 
mass fluxes 

the balance-based evalua- 
related to the convective 

(12) 

giving unambiguously directional balance quantities. 
Similar expressions can be obtained for the balance of 
convective heat flux, namely 

(13) 

The computation of the convective part of balance 
fluxes at each controlling (nodal) point is performed via 
a budget analysis in a postprocessing step. The basic 
formulation used for computing the above balance 
quantities is derived in Appendix C. 

7 TEMPORAL DISCRETIZATION AND 
ITERATIVE SOLUTION PROCESS 

In general, for more complex flow processes it cannot 
be predicted which time steps are allowable with respect 
to the accuracy requirements. Accordingly, a predefined 
time step marching strategy is often inappropriate 
and inefficient. Alternatively, stable fully implicit and 
semi-implicit two-step techniques, known as the 
GLS (Gresho-Lee-Sani) predictor-corrector time 
integrator713’ with automatically controlled stepping of 
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I 

Fig. 3. Adaptive strategy for coupled transient flow, mass and 
heat transport. 

first order by the Forward Euler/Backward Euler (FE/ 
BE) and of second order by the Adams-Bashforth/ 
Trapezoid Rule (AB/TR), have proven to be powerful 
and accurate strategies, especially for strong non- 
linearities and complex situations. At each time step, 
the convergence tolerance y directly governs the time- 
step size. It provides a cost-effective method in that the 
step size is increased whenever possible and decreased 
only when necessary due to the error estimates. The 
GLS scheme is thoroughly described elsewhere.77’7718’30 
Here, we will only address modified features which are 
important in the context of the multiple coupling of 
equations and constraint computation for the present 
tasks. Note, a full Newton method is embedded into the 
AB/TR and FE/BE predictor-corrector methods. The 
overall adaptive solution process is outlined in Fig. 3. 

Denoting the time plane by the subscript n and the 
variable time step width by At,, the coupled matrix 
system (8) is solved in the following 22 raw working 
steps. 

Step 0. Compute the initial acceleration vectors &,, c,, 
and i’,, for n = 0 (once per problem) 

04 = %, c,, T?I) - WI, c,, T&l 

W,J~~ = WC,) - D&n, C,, TX 

1 

(14) 

vi;, = WTJ - L(lr,, C,, T,)T,, 

and guess an initial time step At,. 

Step I. Perform explicit predictor solutions by using the 
AB and FE algorithm, respectively 

$+, =f~~(Atn,At,-,,~~,i-,) $+, =_&(A&,&,) 

C,P+, 
. . 

=JAB(&, h-1, G, G-I) ci+l =~FE(&, Cd 

C+, =~AB(&,&-I, i;,, fn-,) .I Ti+, =h(&, $,J 

(15) 

The detailed description of the functionsfAa() andfFE() 
can be found in Gresho et ~l.,~’ Bixler,’ and 
Diersch.‘7*‘8. 

Step 2. Do a corrector solution for the flow equation 
achieved by the TR and BE scheme, respectively 

Step 3. If constraint conditions are violated, update the 
matrix system (16) for the new flow boundary values 

(16) 
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and restart the flow solution with Step 2. If all constraint 
limits are satisfied continue with Step 4. 

Step 4. Solve the Darcy (equation 

4n+l = w?l+1, c:,, 7 Jz,,) (17) 

Step 5. Update the new accelerations vectors by 
‘inverting’ the TR and BE, respectively 

in,,* =$- @n+l --I#,) -in 
n 

(18) 

k+1 

Step 6. Compute the Ilocal truncation error of the 
approximate flow equation for the AB/TR and FE/BE 
scheme, respectively 

dflo,‘, 
n+l = 

Step 7. Predict the potential new time step length from 
the error estimates of the flow equation 

(20) 

where n is 3 for the AB/TR and 2 for the FE/BE scheme, 
y is a user-specified error tolerance (7 = 10m4 - 10m3 is 
typical), and 11 - 11 is a norm to be chosen as the weighted 
RMS 

II&n = y& 
[ ( j+‘C(h,(n+,) - hi(.J2 )I ‘I2 

(21) IIlaX i 
or, alternatively, as the maximum norm 

Il&~II = mylhi(n+l) - h(n) I - h n-lax 
(22) 

in which NP is the total number of points and h,,, 
corresponds to the maximum value of the hydraulic 
head. 

Step 8. Tactics for acceptance of the predicted new time 
step: if the flow solution does not satisfy the prescribed 
accuracy the time step is reduced by using appropriate 
formulae.17Y18 and the flow solution is restarted with 
Step 2. Otherwise, if the accuracy is satisfied, the 
solution process is continued with Step 9. 

Step 9. Perform the corrector solution for the mass 
transport equation achieved by the TR and BE scheme, 

respectively 

+ JP(c~+l)c~+, + w;,,) 

v:+l) ~ + wqn+1, c:,,) + Jp(c:+,) At, 
c,,, = 

w:+, > = 7C” + !~(c:+,)c:+, + R(C,P+,) (23) 
n 

where J,,(Cz+,) is the partial (tangential) Jacobian 
matrix based on the predictor which results from the 
embodied full Newton approach. Its specific expressions 
depend on the divergent and convective form of the used 
transport equation, as given by Diersch.” 

Step 10. If mass constraint conditions are violated, 
update the matrix system (23) for the new mass 
boundary values and restart the mass solution with 
Step 9. Otherwise, continue with Step 11. 

Step 11. Update the new acceleration vectors en‘,,, for 
the concentration similar to Step 5. 

Step 12. Equivalently to Step 6 compute the local 
truncation error of mass transport dF!y based on 
(Cn+l - c:,,). 

Step 13. Estimate the potential new time step from the 
mass transport computation Ac!p, similar to Step 7 by 
using the error dF!y. 

Step 14. Accuracy check of mass transport: reject the 
current mass transport solution and restart at Step 2 
with a reduced time width At, if the required accuracy 
could not be satisfied. Otherwise, continue with the heat 
transport solution at Step 15. 

Step 15. Perform the corrector solution for the heat 
transport equation accomplished by the TR and BE 
scheme, respectively 

( 
E+ W,,, T:+,) + Jr(T:+,) T,+I = 

n > 

= $&T”+fn) +Jr(T,+,)T:+, +W(T:+,) 

;+L(q.+,, T:,,) +Jr(T:+,) T,,, = 
n > 

= ; T, + JP(T:+,)T:+, + WV:+,) 
n 

(24) 



410 H.-J. G. Diersch. 0. Kolditz 

Step 16. If heat constraint conditions are violated 
update the matrix system (24) for the new heat 
boundary values and restart the heat transport 
solution with Step 15. Otherwise, continue with Step 
17. 

Step 27. Update the new accelerating vectors fn+, for 
the temperature similar to Step 5. 

Step 18. Compute the local truncation transport d!$ 
based on (T,+i - c+i). 

Step 19. Estimate the potential new time step from the 
heat transport computation At?;, similar to Step 7 by 
employing the error dfI$. 

Step 20. Accuracy check of heat transport: reject the 
current heat transport solution and restart with Step 2 
for a reduced time step if the required accuracy could 
not be satisfied. Otherwise, continue with Step 21. 

Step 21. Determine the new time step length 

At,,, = min At!$‘, AtF?:+“S”, At?; 
( > (25) 

and restart the time loop with Step 1 as long as the final 
time is not reached. 

As seen above a constraint violation can lead to 
recycling steps around the matrix solution process for 
flow, mass and heat transport. The matrix updating 
gains efficiency if a total reassembly can be avoided. 
Such a procedure of constraint feedback is generally not 
restricted in the number of loops. Normally, if con- 
straint conditions are raised two recycles become 
sufficient. 

To solve the resulting large sparse matrix systems (eqs 
(14), (16), (17), (23) (24)) appropriate iterative solvers 
for symmetric and unsymmetric equations have to be 
applied.3 For the symmetric positive definite flow 
equations the conjugate gradient (CG) method33 is 
successful provided a useful preconditioning is applied. 
A standard preconditioner, such as the incomplete 
factorization (IF) technique49 and, alternatively, a 
modified incomplete factorization (MIF) technique,4 
based on the Gustafson algorithm, are used. Different 
alternatives are available for the CG-like solution of the 
unsymmetric transport equations: a restarted 
ORTHOMIN’ (orthogonalization-minimization) method, 
a restarted GMRE@ (generalized minimal residual) 
technique and Lanczos-type methods,4717’ such as CGS6’ 
(conjugate gradient square), BiCGSTAB74 (bi-conjugate 
gradient stable) and BiCGSTAB74 (postconditioned 
bi-conjugate gradient stable). For preconditioning, an 
incomplete Crout decomposition scheme is currently 
applied. Commonly, BiCGSTABP is the first choice in 
our practical simulation of large problems. 

8 EXAMPLES OF 2D THERMOHALINE SYSTEMS 

8.1 Dimensionless parameters 

From a dimensional analysis of the governing balance 
equations one can derive the following dimensionless 
parameters54 to characterize the convection processes. 

Solutal Rayleigh number Ra, 

(26) 

Thermal Rayleigh number Ra, 

Ra 

t 
= @TKd 

A 

* = df + (1 - E)X 
pf Cf (27) 

Lewis number Le 

Le=A 
EDd 

(28) 

(29) 

Accordingly, the relation between the solutal and 
thermal Rayleigh number is given by 

Ra, = BLeRa, (30) 

From perturbation analysis along the thermohaline 
Horton-Rogers-Lapwood (HRL) problems4 the criti- 
cal Rayleigh number Ra, is composed of solutal and 
thermal influences. It can be shown for the HRL 
problem that the boundary between stable and unstable 
convection possesses a straight line, namely 

Ra, = Ra, + Rat (31) 

The critical Rayleigh number Ra, depends on boundary 
conditions, geometry and anisotropy. A first critical 
number Racl describes the onset of convection in the 
form of stable stationary rolls, which is normally given 
by 47r*. A further increase of the Rayleigh number leads 
to a second critical stage characterized by RaC2. For this 
regime no more stationary conditions exist and fluctu- 
ating (oscillatory) transient convective patterns appear. 
RaC2 is only known from numerical studies,35’37Y58Y6’ 
where a value of about 390 is reported. For 3D cases it 
has been found that the final convective structures are 
dependent on the initial conditions. Stable convection 
could be recognized only if raised as 2D roll cells. 
Otherwise, the 3D state has been found to be unstable 
from the beginning,78 soon above criticality. 
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ac -=o - e=3OOm ac W -=o 

L,, - L 
L=6@3m 

Fig. 4. Definition of the 2D thermohaline Elder problem 
(modified from Voss and Souza”). 

8.2 The 2D thermohaline Elder problem 

8.2.1 Definition of the problem 8.2.2 Results and discussion 
The 2D saline Elder problem43 is expanded to a 
thermohaline convection process if the salinity field is 
augmented by a thermal distribution as defined in Fig. 4. 
The geometry is given by the aspect ratio A = L/d of 4 
and a so-called intrusion ratio Z = e/L of 0.5. While the 
homogeneous aquifer !is permanently heated from 
below, the salinity gradient acts from above. The 
normalized concentration on the top of aquifer is 
greater than zero in the Icentral section. On the bottom 
of the aquifer the salinity is held at zero. On the other 
hand, the top and bottom boundaries are held at 
constant temperatures as indicated in Fig. 4. Otherwise, 
all remaining boundary :portions are considered imper- 
vious for solute and adiabatic (insulated) for heat. All 
boundaries are impervious for fluid flow. As a reference 

The basis for comparison is the thermohaline simulation 
for the pure saline free convection, i.e. Ra, = 0 and 
B = 00, as presented in the first part of this paper.43 It 
meets the best numerical approximation available for 
this case: divergent formulation of the mass transport 
equation, extended Boussinesq approximation, Galerkin- 
FEM, and a predictor-corrector AB/TR time integrator. 
As the convergence tolerance y a value of 10e3 is used 
both for head h, salinity C and temperature T based on a 
RMS error norm (cf. eqn (21)). 

To study the growing influence of thermohaline 
convection more in detail we consider the computational 
results using mesh A for decreasing buoyancy ratios 
B = 00, $4, 3, 2 as exhibited in a series in Fig. 6. While 
the results for B = 5 (Fig. 6(b)) are still rather similar 

for the hydraulic head a single boundary value of h = 0 
has to be set at one mode (normally in the centre of the 
mesh). The used model parameters are summarized in 
Table 1. 

As stated above, such a formulation of the thermoha- 
line Elder problem can be considered as a mixed DDC 
regime where a finger regime dominates at the beginning 
(cool salinity sinks down) and later a more diffusive 
regime occurs (downsunk salinity is heated from below). 
The finite element meshes as shown in Fig. 5, which have 
proven to be capable of attaining convergent solutions 
for the Elder problem,43 are also used for the following 
investigations. 

Table 1. Simulation parameters for the 2D tbennohaline Elder problem 

Symbol 

A 
B 
CO cf pf 
& 
d 

; 

K 
L 
LX 
Ra, 
& 
To 
AT 
ffL 

QT 

6/G 
PL 

$ 
YI 

x’ 
AS 

Quantity 

aspect ratio 
buoyancy ratio (Turner number) 
reference concentration 
thermal capacity of fluid 
molecular diffusion coefficient 
thickness (height) 
extent of intrusion 
viscosity relation function 
symmetric intrusion ratio 
hydraulic conductivity 
length 
Lewis number 
solutal Rayleigh number 
thermal Rayleigh number 
reference temperature 
temperature difference 
longitudinal thermodispersivity 
transverse thermodispersivity 
density ratio 
longitudinal dispersivity of solute 
transverse dispersivity of solute 
thermal expansion coefficient 
porosity 
thermal diffusivity 
thermal conductivity of fluid 
thermal conductivity of solid 

Value Unit 

4 1 
1, 2, 334, 5 1 
0 g 1-l 
42 x lo6 J me3 K-’ 
3.565 x 1O-6 m* s-l 
150 m 
300 
1 f” 
0.5 1 
4.753 x 1o-6 m s-’ 
600 
1 f” 
400 1 
400, 200, 133.3, 100, 80 1 
0 K 
400, 200, 133.3, 100, 80 K 
0 m 
0 
0.2 r” 
0 m 
0 m 
5 x 1o-4 K-’ 
0.1 1 
3.565 x lo-’ m* s-l 
0.65 J ,-I s-l K-1 

1.591 J ,-1 s-l K-l 
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Fig. 5. Finite element meshes used: mesh A consisting of 4400 
element and 4539 nodes, refined mesh B with 9900 elements 
and 10 108 nodes. 

to the pure (asymptotic) saline convection at B = 00 
(Fig. 6(a)), beginning with B = 4, the influence of the 
superimposing thermal convection on the salinity 
distribution becomes apparent (Figs 6(c)-(e)). There 
are no more monotonic changes in the salinity pattern. 
Surprisingly, salinity distributions reveal asymmetric 
characteristics at longer times when the influence of 
thermal convection becomes stronger as seen at B = 2 in 
Fig. 6(e). 

To check the influence of spatial resolution the 
computations are repeated with the refined mesh B. 
The long-term salinity pattern for small buoyancy ratios 
is illustrated in Fig. 7. Now, symmetric salinity 
distributions appear for B = 4 (Fig. 7(a)) and B = 2 
(Fig. 7b)). A comparison with the coarser mesh 
counterparts of Fig. 6 reveals further qualitative changes 
in the pattern evolution. The case with an equilibrium of 
solutal and thermal buoyancy effects for B = 1 (Fig. 
7(c)) gives again asymmetric distributions of salinity. 
Note, the effective Rayleigh number is here already 800 
(Ra = Ra, + Ra,) where transient disturbances should 
take influence. However, there is apparently no physical 
reason for a broken symmetry and mesh effects are 
likely responsible for such an asymmetric evolution. It is 
obvious, at sufficiently high Rayleigh numbers that each 
initially small disturbance which is not perfectly sym- 
metric can evoke asymmetry, which grows over a longer 
period. Moreover, in the numerical solution process 
such disturbances can be caused for example, by 
inappropriate spatial discretizations, the remaining 
errors in solving the matrix system by iterative 
techniques or by round-off errors arising in computing 
the physically unstable process. On the other hand, in a 
physical experiment or in real sites the trigger of 
asymmetry may be an initially disturbed distribution 
or due to non-homogeneous materials. 

8.3.1 Definition of the problem 
The considered test case is an idealization of the flow 
over a salt dome,32)43V44155 where the geometry is greatly 
simplified. The geometry and boundary conditions used 
are shown in Fig. 9. The cross-section of the model 
extends horizontally 900 m and vertically 300 m having 
an aspect ratio A of 3. The aquifer is considered to be 
homogeneous and isotropic. The hydraulic head varies 
linearly on the top of the aquifer. All remaining 
boundaries are impervious to flow. The salinity on the 
top is taken equal to zero (freshwater) over the entire 
boundary. Additionally, a minimum mass flux con- 
straint condition of Qy’ % 0 is imposed. This ensures 
that the freshwater condition is only valid if the flow 
enters the domain. The middle section of the aquifer 
base represents the cap of the salt dome having a relative 
salt concentration equal to unity. The thermohaline 
extension of the salt dome problem concerns a super- 
imposition of a thermal gradient acting upward and it 
tends to destabilize the brine pool due to the arising 
buoyant forces. Accordingly, the bottom of the aquifer 
is assigned by a constant normalized temperature of 
T = 1, while the top boundary is imposed by a 
normalized temperature of zero (T = 0). Again, the 
upper boundary is additionally constrained by a 
minimum heat flux of zero QF”’ E 0 which permits a 
control of the boundary conditions for inflowing and 
outflowing situations. The side walls of the domain are 
regarded as impervious for solute mass and adiabatic 
(insulated) for heat. The model parameters are summar- 
ized in Table 2. According to the DDC classification as 
stated above, the formulation of the thermohaline salt 
dome problem is one of a diffusive regime where the 
buoyancy force is caused by heat, which has a larger 
diffusivity than salt. 

The finite element mesh as shown in Fig. 10 is used for 
the simulations of the thet-mohaline salt dome problem. 
The predictor-corrector AB/TR time integrator with a 
RMS-based convergence tolerance y of lop3 is applied. 

8.3.2 Results and discussion 

It seems that the numerical solutions reflect the 
physical instabilities which are most apparent for the 
thermohaline system if the solutal and thermal effects 
are nearly equilibrated (B = 1). It becomes obvious that 
modelling of such unstable thermohaline systems will be 
very expensive, especially in 3D. 

Simulated results of the salt dome problem at a time of 
100 years for different buoyancy ratios B are shown in 
Fig. Il. It reveals that the temperature effect on the 
saltwater distribution remains negligible or small if 
compared with the single-diffusive results43 at higher 
buoyancy ratios B. As seen for B = 2, however, if the 
buoyancy ratio becomes smaller, vigorous temperature 
influences on the brine pattern result in form of a ‘wavy’ 
salinity field caused by the thermal buoyancy. 

Finally, Fig. 8 presents both the stimulated tempera- To illustrate how such a thermal effect on the brine 
ture and salinity distributions for the case of B = 4. It flow is evolved a series of salinity and temperature 
demonstrates how the salinity evolution in a thermoha- patterns are outlined in Fig. 12 for the case of B = 2. 
line convection process is related to specific pattern The ‘wavy’ salinity characteristics are triggered in 
formations of the temperature field. front of the salt wedge by thermally driven eddies. As 

8.3 The 2D thermohaline salt dome problem 
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a) 

b) 

4 

e) 

Fig. 6. Influence of thermohaline convection: computed salinity distributions of 0.2 and O-6 normalized isochlors at 1, 2, 4, 10, 
15 and 20 years (from left to right) for different buoyancy ratios (a) B = cm; (b) B = 5; (c) B = 4; (d) B = 3; and (e) B = 2 by 

using mesh A. 
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expected, it leads to an increased saltwater effluent on such high temperatures corresponding to B = 2 may be 
top of the aquifer. Note, that a buoyancy ratio of 2 unlikely to occur in practice. However, the variants 
implies an already large temperature difference for a can be valuable as test cases to study the effects of 
high-concentration brine and, accordingly, corresponds high temperatures, which may, for 
to an extreme situation. It should be mentioned that the vicinity of a disposal facility 
for the real site behind the present salt dome problem waste. 

b) 

instance, arise in 
for heat-emitting 

Fig. 7. Mesh effects: computed salinity distributions of 0.2 and O-6 normalized isochlors at 10, 15 and 20 years (from left to right) for 
different buoyancy ratios (a) B = 4; (b) B = 2; and (c) B = 1 by using mesh B. 
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Salinity 

Fig. 8. Computed distributions of salinity and temperature at 
several times for B = 4 using mesh A. 

h = h, 

T=C=O constrained by Qy’ = tZ&‘“‘“’ = 0 
B b 

L=!WOm 

Fig. 9. Definition of the 2D thermohaline salt dome problem 
(modified from Herbert et aL3*). 

9 EXAMPLES OF 3D CELLULAR CONVECTION 

9.1 The 3D Elder problem for single-diffusive (solutal) 
and double-diffusive (thermohaline) convection 

9.1.1 Dejinition of the problem 
Originally, the Elder problem23 refers to a 2D cross- 
sectional convection process in a fluid-saturated porous 
layer. As a result, only 2D roll cells can appear. Now, 
interest is focused on adequate 3D situations. For this 
purpose the Elder problem is expanded for both single- 
diffusive and double-diffusive applications in a porous 
box consisting of a square base (L x L) and height d. 
This box has the same cross-sections along the Cartesian 

Symbol 

A 
B 
CO 

&If 
csps 
Dd 
d 

i 
a 

hb 
K 
Le 
Ra, 
Rat 
To 
(YL 

(YT 

S/G 
PL 

Sr 

; 
Xf 
AS 

Table 2. Simulatiov parameters for the 2D thermohaline salt dome problem 

Quantity Value Unit 

aspect ratio 3 1 
buoyancy ratio (Turner number) 2, 3, 5 1 

reference concentration 0 
thermal capacity of fluid 4.2 x lo6 

g 1-l 

thermal capacity of solid 2.52 x lo6 
J m-i K-’ 

molecular diffusion coefficient 1.39 x 1o-8 
J&K-l 

thickness (height) 300 m 
extent of intrusion 300 
viscosity relation function 1 f” 
hydraulic head at point a 10.228 m 
hydraulic head at point b 0 m 
hydraulic conductivity 1.0985252 x lo-’ ms -I 

Lewis number 217 1 
solutal Rayleigh number 2.4 x 10’ 1 
thermal Rayleigh number 547, 365, 219 1 
reference temperature 1 K 
longitudinal thermodispersivity 20 m 
transverse thermodispersity 2 
density ratio 0.2036 108 r” 
longitudinal dispersivity of solute 20 m 
transverse dispersivity of solute 2 m 
thermal expansion coefficient 5 x 1o-4 
porosity 0.2 P-l 
thermal diffusivity 6.024 x lo-’ m* s-’ 
thermal conductivity of fluid 0.65 J ,-I s-I K-l 

thermal conductivity of solid 3 J ,-I s-I K-1 
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Fig. 10. Finite element mesh used for 2D thermohaline salt 
dome problem consisting of 1920 elements and 2013 nodes. 

axes as defined in Fig. 4 for the 2D sketch. Boundary 
conditions and measures are identical to the 2D case 
shown in Fig. 4. Now, salinity is held constant, in an area1 
extent, on the top and bottom of the porous box. The used 
parameters correspond to those given in Table 1. 

The box is discretized by hexahedral trilinear finite 
elements as displayed in Fig. 13. To reduce the 
computation effort only a quarter of the discretized 
domain is actually simulated. It is based on the 
assumption that symmetric planes occur for the studied 
range of Rayleigh numbers. Both AB/TR and FE/BE 
time marching with a RMS-based convergence tolerance 
y of low3 have been tested. For the long-term simula- 
tions and the chosen spatial resolution the second-order 
AB/TR scheme with a full Newton method becomes 
sensitive and produces oscillations at later simulation 
times. On the other hand, the first-order FE/BE scheme 
with full Newton method has proven to be more stable 
and robust and, therefore, it is preferred for the present 
3D simulations. Generally, Galerkin-FEM (i.e. no 
upwinding) is used. To simulate the convection process 
over a period of 100 years the FE/BE scheme takes 641 
time steps for the single-diffusive problem and 965 time 

steps for the double-diffusive (thermohaline) problem 
(excluding restarted steps). 

9.2.2 Results and discussion 
The 3D free convection process is similar to the 2D 
counterpart, with some interesting new features. To give 
more insight into the physics of the 3D convection 
process, Fig. 14 shows the evolution of salinity from 
different views. The 3D cut-away images (left column of 
Fig. 14) display the progressing fingering characteristics 
in the 3D space. Similar to the 2D case we also find an 
upwelling salinity pattern in the centre of the box at the 
given time stages. The 3D influence also becomes 
apparent in the two horizontal views at an upper 
elevation of 0.9 d (135 m) and the middle horizon of 0.5 d 
(75m) as shown in Fig. 14. At the beginning, the 
quadratic geometry of the intrusion area on top is visible 
in the convection pattern. Fingers appear around the 
border of the intrusion area and ‘blobs’ grow down at 
the four corners. The quadratic pattern evolves into 
more complicated multicellular formations via a number 
of characteristic stages. More ‘blobs’ appear up to the 
time when the salinity reaches the bottom. Then, the 
structures begin to fuse and the pattern is completely 
reformed. After this phase a convection pattern remains 
which has a characteristic diagonal ‘star’ form. This 
‘star’ is a result of the geometry of the square intrusion 
area. It becomes clear that the final formations have a 
strong dependency on the geometric relations. 

An illustration of the pattern evolution in 3D space 
is given in Fig. 15 where isosurfaces of the 50% 
salinity are shown at characteristic time stages. Up to 
a time of about 4 years the salinity primarily sinks 
down and forms a dissected finger formation. At later 

Fig. 11. Evolution of the thermohaline convection system: computed salinity and temperature distributions at 100 years for different 
buoyancy ratios (a) B = 5; (b) B = 3; and (c) B = 2. 
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Fig. 12. Evolution of the ther lohaline convection system: 
computed salinity and temperature distributions at several 

times for a buoyancy ratio of B = 2. 

time the upper part contracts and forms the typical 
diagonal ‘star’, while larger ‘blobs’ are getting fused below. 

The 3D thermohaline Elder problem has been simulated 
for a buoyancy ratio of B = 5, where the solutal Rayleigh 
number Ra, is again 400. The 3D distributions of the 
computed salinities and temperatures for up to 20 years 
are displayed in Fig. 16. In contrast to the single-diffusive 
formation (cf. Fig. 14) the salinity pattern appears more 
diffusive at later times when the temperature field affects 
the convection system. Then, the thermally buoyant 
forces accelerate the contraction process of the sinking 
salinity plume in the centre. In the final stage, while the 
single-diffusive convection still provides an upwelling 
flow in the centre, the thermohaline convection process 
reveals a single downwelling characteristics for the 

simulated mesh quaner 

Fig. 13. Total finite element mesh for the 3D Elder problem: 
only a quarter of the mesh is actually used in the computation. 
This quarter consists of 48 000 hexahedral elements and 5 1701 

nodes. 

cut-away 3D view uppahaimnatO.9d 

Fig. 14. Computed salinity patterns of the 3D Elder problem at 
times of (a) 1; (b) 2; (c) 4; (d) 10 and (2) 20 years. 

salinity (see Figs 15 and 17). As seen, the most heated 
water is buoyantly affected outside and around the denser 
salinity core, where the isotherms come to the upper 
locations. These mutual influences between salinity and 
temperature are more apparent in Figs 17 and 18 for 
the computed isosurfaces of salinity and temperature, 
respectively. 

Fig. 15. Computed 3D isosurfaces of 50% salinity for the 3D 
Elder problem (viewing into the box from bottom to top) at 

times of (a) 1; (b) 2; (c) 4; (d) 10; (e) 15 and (f) 20 years. 
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Fig. 16. Cut-away views of simulated salinity (left) and 
temperature (right) distributions for the 3D thermohaline 
Elder problem at buoyancy ratio of B = 5 and times of (a) 2; 

(b) 4; (c) 10 and (d) 20 years. 

9.2 The 3D Bimard convection 

9.2.1 Definition of the problem 
Three-dimensional convective pattern formations in 
domains representing a thin porous layer, i.e. for large 
aspect ratios A, can be considered as a porous medium 
equivalent of BCnard convection. As Elder23 studied 
such a problem in 2D - referred to as the ‘long-heater 
problem’ - for a Rayleigh number of 200, an aspect 
ratio A of 10, and an intrusion ratio Z of 0.8. We extend 
this ‘long-heater problem’ to 3D similar to the above 
Elder problem. The remaining simulation parameters 
correspond to that of the original Elder problem 
described in the first part of this paper.43 Due to the 
multicellular convection process in the porous layer, a 
more refined spatial discretization is needed compared 
with the 3D Elder problem above. Moreover, no 
assumptions of symmetry are made and, accordingly, 
the domain has to be fully discretized. The finite element 
mesh for the problem consists of 220 000 (100 x 
100 x 22) hexahedral trilinear elements containing 

234623 (101 x 101 x 23) nodes. Again, for the temporal 
discretization the FE/BE predictor-corrector scheme 
with the full Newton method and a RMS-based 
convergence tolerance y of lop3 is applied to the 
simulation. 

9.2.2 Results and discussion 
The striking features of 3D Benard convection develop- 
ment are shown in Fig. 19. The initial motion is 
characterized by a rectangular string of end-cells 
where, at the four corner points, the most intensive 
growths of ‘blobs’ can be observed. It is followed by a 
growth of cells starting from the ends of the intrusion 
area on top. At these times a remarkable feature of the 
3D convection process is the annular roll pattern 
formation. At smaller times the cell structures are 
rather complex (Fig. 19(b)) showing the birth of 
subcellular eddies both across and along the annular 
structure. Due to the smaller Rayleigh number the 
nonroll-like perturbations are smoothed at larger times 
and the convection process results in a highly regular 
pattern of ring structures. 

10 Closure 

The finite-element method is applied to simulate 
variable density flow processes in 2D and 3D ground- 
water systems. The described solution strategies as 
implemented in the simulator FEFLOW are more 
general and are primarily developed to tackle complex 
practical applications where solutal and/or thermal 
density effects play an important role. However, before 
more complex field situations can be studied the chosen 
methods and codings have to be extensively tested over a 
wider spectrum of this important class of non-linear 
problems. In this context the aim of the present paper is 
mainly proving and benchmarking of the simulations 
along examples where comparable results are available, 
or if not, the obtained results are to be supposed as a 
comparison basis for further studies. We have chosen 
the Elder and salt dome problem (HYDROCOIN case 5 
level 1) as well suited and representative examples. They 
allow us both to participate in the process of resolving 
partly contradictory results given in the literature and to 
expand (or generalize) the 2D solutions to three 
dimensions and additional coupling phenomena from a 
well-documented and accepted source. The extensions 
concern thermohaline and multicellular convection pro- 
cesses in 2D and 3D. Unfortunately, to date both 
numerical and experimental results of 3D and thermoha- 
line convection are rare and we are mostly dependent on 
an incremental procedure in comparing and interpreting 
the results among one another. In this context we found 
similarities and also interesting new features regarding the 
pattern formations of the buoyancy-driven convection 
processes. 
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Fig. 17. Computed 3D isosurfaces of 50% salinity for the 3D thermohaline Elder problem (viewing from bottom to top) at B = 5 
and times of (a) 1; (b) 2; (c) 4; (d) 10; (e) 15 and (f) 20 years. _ 

Fig. 18. Computed 3D isosurfaces of 50% temperature for the 3D thermohaline Elder problem (viewing from top to bottom) at 
B = 5 and times of (a) 1; (b) 2; (c) 4; (d) 10; (e) 15 and (f) 20 years. 
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Fig. 19. Computed salinity patterns for the 3D BCnard 
convection problem at Rayleigh number of 200 and dimen- 

sionless times of (a) 0.013; (b) 0.026 and (c) 0.078. 

The interaction between solutal and thermal convec- 
tion is studied by varying the buoyancy ratio B, which 
expresses the relationship between buoyancy forces due 
to solutal and thermal convection. Differences between 
(pure) saline convection and thermohaline convection 
become apparent for buoyancy ratios B 5 5. We found 
asymmetric convection patterns for buoyancy ratios 
near to unity. In this situation, the hydrodynamic 
system becomes strongly unstable because the solutal 
and thermal buoyancy effects are nearly equilibrated. As 
a result, very small vertical velocities trigger the 
convection process. Grid effects indicate the physical 
instability. The numerical solution of thermohaline 
convection systems with buoyancy ratios near to unity 
requires extremely fine spatial discretizations. 

Three-dimensional convection needs sufficiently high 
spatial and temporal resolutions if damping measures, 
such as upwinding, are to be avoided. At moderate 
Rayleigh numbers (400 for the 3D Elder problem and 
200 for the 3D BCnard convection) we used more than 
50000 nodes for a quarter of the domain and about 
230 000 nodes for the total discretization of a 3D porous 
layer subjected to a free convection process. In compar- 
ison with 2D, where it has been found that about 10 000 
nodes are required to accomplish satisfactorily accurate 
results for the Elder problem, the chosen 3D resolution 
seems to be a minimum for this class of problems. Time 
marching is based on a predictor-corrector strategy with 
an automatic time step control embedded in a one-step 
full Newton method. For the present examples more 
than 600 intrinsic time steps are required for simulating 
a 3D convection process with a duration of about 20 
years for a convergence tolerance y of 10-3. 

It becomes clear that a long-term analysis of 3D free 
or thermohaline convection takes a large numerical 
effort and is normally a time-consuming task. While a 
2D simulation is still on the order of hours of CPU time, 
a 3D problem can take days of runtime on a work- 
station. However, by using a high-speed workstation 
available today the 3D Elder problems and the Btnard 
convection could be solved in one day and two days 
of runtime, respectively. It should be taken into 
consideration that the FEFLOW code is general and 
not streamlined, for instance, for special cases of free 
convection in rectangular domains with homogeneous 
parameters. That means the impact and the found 
efforts are representative for general problems having an 
arbitrary geometry and permitting such parametric 
and boundary conditions which are required in actual 
site-specific applications.” 
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APPENDIX A 

Weak form of the continuity eqn (1) 

The weak form of the continuity eqn (1) gives 

(AlI 
Introducing the Darcy eqn (2) into eqn (1) and taking 
into account that the buoyancy term leads to 

Pf - PEl 
-=(c ~c)(c-co~-B(MJ 

d so 
W) 

by using the fluid density equation of state (S), following 
final weighted residual formulation of the continuity 
equation results 

- p(T - To) 1 ej 

- J R wqf (Cs _” Co) dXi ( - “-/j?E) 
l  

(A3) 
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form of the substitution formulation to solve the 
hydraulic head h. 

Weak form of the Darcy eqn (2) 

Formally, a weak form of the Darcy equation can easily 
be derived as 

- p(T - To) I ej 6-W 

to solve the vector of Darcy fluxes qf at given h, C and T. 

Weak form of the mass transport eqns (3) 

The weak formulations for the divergent and convective 
forms of the contaminant mass conservation equations 
differ from the fact that for the former, the divergence 
theorem is applied both to the convective and the 
dispersive terms 

while the conventional convective form applies the 
divergence theorem only to the dispersive (second 
order) term 

Finally, it yields the following weak formulations 

for the divergent form and 

(4 

for the convective form, respectively, to solve the 
concentration C. 

Weak form of the heat transport eqn (4) 

Similar to the above, the weak formulation of the 
convective form of the heat transport equation is given 
by 

+ (A9) 

for solving the temperature T. 

Finite element formulations 

Employing the Galerkin version of the FEM (GFEM), 
w,,, = N,, for the above weak formulations and repla- 
cing the h, qf, C and T variables by their trial 
approximations 

h(Xi, t) % i(Xi, t) = CN,(Xi)h*(t) ’ 

4fCxi7 t, g 4ftXi7 t, = C Nm(xi)dm(t) 
m 

? 

C(Xiy t) S C(Xiy t) = C Nm(Xi)Cm(t) 
@W 

T(xiy t) E f’(Xiy t) = eN,(xi)Tm(t) 
m / 

the matrix coefficients of eqn (8) are as follows 

pm = I (All) 

S,, = 6412) 

+ ReN,,,N,, 1 divergent form 
I 

+ W + Q,MA 
1 

convective form 
J 

(A13) 
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Bm = lo %Qc - /r Nmqpl divergent form \ 

R, = Jn~m~C - Jr N,,,~F convective form 1 

6417) 

W,=~~N~QT+&“~ w3) 

APPENDIX B 

Global smoothing of discontim~ous velocity fields 

A global approximation of the smoothed Darcy velo- 
cities can be written as 

qf(xi) = CN,(xi)drn 
M 

Assume that we have an unsmoothed (discontinuous) 
velocity field qp(xi), then the smooth function which 
provides a best fit in the least squares sense over the 
domain R can be obtained from a minimization of the 
functional 

J = Jn (d - qp)‘+ Min 

The minimilization procedure 

W) 

z=Jnz($-9:.)-$=0 for m= 1,2,... 

w 
or 

results in a system of linear equations to solve the 
smoothed velocities 45, namely 

where M,,,, represents the mass matrix and 2, is the 
RHS involving the unsmoothed relations. They are 
formed in the finite element assembling procedure as 

and, by inserting the Darcy velocity components, as 

-p(F- T,) 1 I ej (B7) 

Note, the least square approximations of global 
smoothing (B7) is equivalent to the Galerkin weighting 
procedure (A16) in Appendix A. 

A cost-effective alternative appears if the mass matrix 
M,, is lumped by an row-sum or diagonal scaling 

A&f,” = pJ4CNJ m =n 
i 

W) 
0 m#n 

without need to solve the linear equation system (B5). 
Mass lumping can be shown to be equivalent to an area- 
weighted averaging for nodal values. 

Local smoothing of discontinuous velocity fields 

Unlike global smoothing, there is an efficient way to 
smooth velocity fields by using only individual element 
information. This is termed as local smoothing45 and 
provides a simple nodal averaging based on the number 
of elements joined at a given mode (element patch). 
Among several approaches suggested FEFLOW 
employs the following two-step local technique. 

Step I. The discontinuous velocity in each element e 

is computed at the Gauss points p (2 x 2(x2) for linear 
and 3 x 3(x3) for quadratic elements) with given 
approximations of the hydraulic head I;‘, concentration 
c?‘“, and temperature ? for element e from previous 
solutions. 

w 
Step 2. The values at the Gauss points are assigned to 
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the nearest corner node p -+ m. Each nodal contribution 
is summed up and, at the end, the nodal values are 
averaged by their numbser of nodal contributions ~zr 
from the patch sharing the node m 

PlO) 

APPENDIX C 

Auxiliary problem formuhation used for budget flux 
computation of the convec:tive part 

The budget analysis aims at the computation of the 
normal convective ma:ss (or heat) fluxes QE = 
C Jr (CR&. Multiplying each term of the continuity 
eqn (1) by concentration 1C we get the weak form 

GQp + QEB) - Jnwcso~ (Cl) 

It is further 

cc4 

Employing the divergence theorem on the LHS of 
identity (C2) we obtain from (Cl) and (C2) 

It has been found to evalu.ate the individual terms of eqn 
(C3) in different ways. While the velocity qf in the first 
term of the RHS is expressed by the Darcy law, the 

second RHS term uses explicitly the velocity from the 
computation. The LHS surface integral describes 
already the desired convective mass flux along the 
boundary portion l?, where qz = qfnilR is the normal 
fluid flux and qFc = Cqinj(R = CqnhIR iS the normal 
convective mass flux through the boundary. 

Finally, following finite element formulation results in 
computing the normal convective mass flux from given 
solutions (AlO) of hydraulic head i, Darcy flux & 
concentration C, and temperature T 

-p(F’- To) 1 ej 

+ J 
olym(N&)(Q, + QEB) 
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All contributions of mass flux are summed up at node m 
to obtain the lumped nodal balance mass flux QE in the 
form 

(C5) 

which is defined positive inward and will be used for the 
boundary constraint control (see Section 6). Similar 
expressions to (C4) and (C5) can be derived for heat 
balance fluxes if pfcfT is used as a multiplier. 


